Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting

نویسندگان

  • Ratnadip Adhikari
  • R. K. Agrawal
چکیده

Recently, Particle Swarm Optimization (PSO) has evolved as a promising alternative to the standard backpropagation (BP) algorithm for training Artificial Neural Networks (ANNs). PSO is advantageous due to its high search power, fast convergence rate and capability of providing global optimal solution. In this paper, the authors explore the improvements in forecasting accuracies of feedforward as well as recurrent neural networks through training with PSO. Three widely popular versions of the basic PSO algorithm, viz. Trelea-I, Trelea-II and Clerc-Type1 are used to train feedforward ANN (FANN) and Elman ANN (EANN) models. A novel nonlinear hybrid architecture is proposed to incorporate the training strengths of all these three PSO algorithms. Experiments are conducted on four real-world time series with the three forecasting models, viz. Box-Jenkins, FANN and EANN. Obtained results clearly demonstrate the superior forecasting performances of all three PSO algorithms over their BP counterpart for both FANN as well as EANN models. Both PSO and BP based neural networks also achieved notably better accuracies than the statistical Box-Jenkins methods. The forecasting performances of the neural network models are further improved through the proposed hybrid PSO framework. Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Sales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods

The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...

متن کامل

Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...

متن کامل

Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...

متن کامل

Optimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)

The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAEC

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013